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EB Experiment, Mont Terri URL 
(Mayor & Velasco 2014) 

REM Experiment 
(Conil et al. 2016) 

 Heterogeneous distribution of bentonite dry density 
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Compaction pressure ~ 80 MPa 

Dry density 2.0 Mg/m³ 

Void ratio 0.37 

Water content 7.08% 

Degree of saturation 52.25% 

 Compacted mixture with 70% MX-80 bentonite – 30% quartz sand 

 

 

 

 

 

 

 

 Total suction imposition using the vapour equilibrium technique (𝜓 ∈ [3 – 150] MPa) 

 Free-swelling conditions (with sample volume measurement) 

 Constant volume conditions 
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Water ratio Void ratio 

𝑒𝑤 =
𝑉𝑤

𝑉𝑠
=

𝜌𝑠

𝜌𝑤
𝑤 𝑒 =

𝑉𝑣

𝑉𝑠
 

𝜌𝑑0 = 2.0 Mg/m3 
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𝑆𝑟 =
𝑉𝑤

𝑉𝑣
=

𝑒𝑤

𝑒
 

Degree of saturation 
⇨ Competing effects of 

 Water uptake (𝑒𝑤) 

 Swelling (𝑒) 

𝜌𝑑0 = 2.0 Mg/m3 



Introduction Material and methods Experimental results Water retention model Validation Conclusions 

6 

𝑆𝑟 =
𝑉𝑤

𝑉𝑣
=

𝑒𝑤

𝑒
 

Degree of saturation  

(Wang et al. 2014) 

⇨ Competing effects 

enhanced by the dry density 

𝜌𝑑0 = 1.67 Mg/m3 
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 Classic water retention model (Van Genuchten, Brooks & Corey…)  

  Unique relationship 

 

𝑆𝑟 = 𝑆𝑟 𝑠  

  

  Unable to reproduce the observed behaviour ! 

 

 Advanced water retention models (Gallipoli et al. 2003, Nuth & Laloui 2008, Tarantino 2009, Romero et al. 2011, 
Zhou et al. 2012, Della Vecchia et al. 2015 …) 

  Effect of void ratio 

 

𝑆𝑟 = 𝑆𝑟 𝑠, 𝑒  

  

  Good ability to track the effect of initial void ratio … but generally within a limited range 

                       of values ! 

 

 Need for a new water retention model for compacted bentonites exhibiting important swelling strain 
upon wetting 
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 Total void ratio: 

𝑒 =
𝑉𝑣

𝑉𝑠
= 𝑒𝑚 + 𝑒𝑀 

𝑒𝑚: Microstructural void ratio (intra-aggregate porosity) 

𝑒𝑀: Macrostructural void ratio (inter-aggregate porosity) 
 

 Total water ratio: 

𝑒𝑤 = 𝑆𝑟𝑒 =
𝑉𝑤

𝑉𝑠
= 𝑒𝑤𝑚 + 𝑒𝑤𝑀 

𝑒𝑤𝑚: Microstructural water ratio 

𝑒𝑤𝑀: Macrostructural water ratio  
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 Macrostructural water retention model: 

based on van Genuchten model 
 

𝑒𝑤𝑀 = 𝑒 − 𝑒𝑚 1 +
𝑠

𝛼

𝑛 −𝑚

 

 

𝛼, 𝑛, 𝑚 : Model parameters 
 

𝛼 =
𝐴

𝑒 − 𝑒𝑚
 

 

𝐴: Model parameter. 

 

 Microstructural water retention model: 

based on Dubinin isotherm 
 

𝑒𝑤𝑚 = 𝑒𝑚 exp − 𝐶𝑎𝑑𝑠𝑠 𝑛𝑎𝑑𝑠  
 

𝐶𝑎𝑑𝑠, 𝑛𝑎𝑑𝑠: Microstructural void ratio (intra-

aggregate porosity) 

 

 

 Microstructure evolution: 
 

𝑒𝑚 = 𝑒𝑚0 + 𝛽0𝑒𝑤 + 𝛽1𝑒𝑤
2  

 

𝑒𝑚0: Intra-aggregate void ratio for the dry 

material 

𝛽0, 𝛽1: parameters quantifying aggregate 

swelling 
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Calibration of the model along constant volume wetting paths 
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Validation of the model along free swelling wetting paths 

𝜌𝑑0 = 1.67 Mg/m3 𝜌𝑑0 = 2.0 Mg/m3 
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Microstructure evolution along constant volume and free swelling wetting paths 

Constant volume Free swelling 



Bentonite MX-80 admixtures 

swelling pressure         dry density 

heterogeneity ?   

• different σr, σax evolution  

  heterogeneity ?   

  distance to wetting end ?  

• height-average stresses evolution 

    σr ≈ σax 

 

 Experimental observations: Bernachy-Barbe et al. (2016) 

• powder and pellets 

• hydration tests 
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• hydromechanical coupling 

• new water retention law,  

  modified BBM (Dieudonne, 2016) 

• Pg, T: fixed 

• water injection at the bottom 

 Numerical modelling LAGAMINE 

 axisymmetric model 

Bentonite MX-80 admixtures 

 

 

 

 

 

 

Case 1: homogeneity 

Case 2:  

axial heterogeneity 

Case 3:  

radial heterogeneity 

reference model 

ρd (g/cm³) p0 (MPa) Kw (m²) 

1.5 0.27 3·10-20 

ρd (g/cm³) Kw (m²) p0 (MPa) 

1 1.43 4·10-20 0.14 

2 1.6 1.5·10-

20 

0.68 

mean case 1:homogeneity 0.36 (>0.27-case 1)  ρd              p0 

trial and error, swelling pressure exper. data 14 



 

 

 

 

 

 

Case 2: axial heterogeneity 

• σr :distance to the wetting end + heterogeneity 

• Psw=3.9 MPa  (case 1) √    t≈1400 d (>1000 d, case 1) 

•  height-average: σr=σax (case 1)√ 

 Height-average stresses (mean of 5 layers) 

ρd=1.6 g/cm³, p0=0.68 MPa 

ρd=1.43 g/cm³, p0=0.14 MPa 

εax>0 σax≠f(distance) 

εax<0 

εax>0 

εax<0 

εax<0 εax 

εr=0 
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Case 3: radial heterogeneity 

• Water pressure evolution Pw: axial and radial flow 

t=1 d t=10 d 
t=50 d 

65 mm 

ρd (g/cm³) Kw (m²) p0 (MPa) 

1 1.43 4·10-20 0.14 

2 1.6 1.5·10-20 0.68 

mean case 1:homogeneity 0.36 (>0.27-case 1) 

16 



 

 

 

 

 

 

Case 3: radial heterogeneity 

ρd=1.43 g/cm³ 

Kw=4·10-20 m² 

 p0=0.14 MPa 

ρd=1.6 g/cm³ 

Kw=1.5·10-20 m² 

 p0=0.68 MPa 

• σr: distance to the wetting end + heterogeneity √ 

• σax: heterogeneity  

 height-average: 

σr=σax√ 

 height-average: 

σr=σax√ 
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Case 3: radial heterogeneity 

 deformations 

εax 

εax<0 

εax>0 

εr 

εr>0 εr>0 

εr<0 εr<0 εr<0 

1)  ρd=1.43 g/cm³ 

     Kw=4·10-20 m² 

     p0=0.14 MPa 

2) ρd=1.6 g/cm³ 

    Kw=1.5·10-20 m² 

    p0=0.68 MPa 
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Case 3: radial heterogeneity 

ρd=1.43 g/cm³ 

Kw=4·10-20 m² 

 p0=0.14 MPa 

ρd=1.6 g/cm³ 

Kw=1.5·10-20 m² 

 p0=0.68 MPa 

• Psw=4.0 MPa  (cases 1, 2=3.9 Mpa) √ 

• t≈1000 d (case 1=1000 d, case 2=1400 d) 

• height-average: σr=σax (cases1,2) √ 

Height-average stresses (mean of 5 layers) 

19 
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 Important gradient of bentonite dry density in engineered structures (both created during 

installation and induced by wetting). 

 

 Water retention properties of bentonite affected by dry density changes and volume constrain 

conditions (constant volume vs. free swelling). 

 

 Existing water retention models generally fail in tracking the evolution of the degree of saturation 

along free swelling paths. 

 

 Development of a new water retention model for compacted bentonites based on a differentiation 

between micro- and macro-structure water. 

 

 Good ability of the model to reproduce the water retention behaviour under both constant volume 

and free swelling conditions. 

Conclusions : constitutive model  



Conclusions : heterogeneous samples  

 Final state, Sr=100%: 

• Height-average stresses do not depend on heterogeneity, σr=σax 

• Swelling pressure does not depend on heterogeneity 

 

 

 

 

 

 

 Stresses evolution with time: 

 σr : distance to the wetting end + axial/radial heterogeneity  

 σax: radial heterogeneity  

case 1 

homog. 

case 2 

axial heter. 

case 3 

radial heter. 

Psw. 3.9 3.9 4.0 

time 1000 d 1400 d 1000 d 

mean permeability? 
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