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Long-term In-situ Test (LIT) at
the Grimsel Test Site and
supporting laboratory studies

Rinderknecht F., Kraft S., Huber F., Geckeis H., Schafer T.,
KIT-INE

Lanyon B., Fracture systems Ltd.
Blechschmidt I., Nagra

Karlsruhe Institute of Technology - Institute for Nuclear Waste Disposal (KIT-INE)
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Long-term In-situ Test
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Supporting mock-up tests

cpr . Y - !
 Atrtificial 1 mm horizontal fracture aperture set-up H 160 mm
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TECHNICKA UNIVERZITA V LIBERCI
Ustav pro nanomaterialy, pokrocilé
technologie a inovace

The approaches for simulation of processes in the
engineered barriers of the radioactive waste repository

Ales Balvin, llona Hancilova, Milan Hokr
BEACON, Kaunas, Lithuania
19-20 June, 2017

Studentska 1402/2 | 461 17 Liberec 2 | tel.: +420 485 353 843 | ilona.hancilova@tul.cz | cxi.tul.cz



TECHNICKA UNIVERZITA V LIBERCI
Ustav pro nanomaterialy, pokrocilé
technologie a inovace

The poster summarizes our modelling approaches and example problems connected with processes in
bentonite:

= Multidimensional conception (Flow 123d)
— hydraulical models (flow in saturated and partly saturated
medium with discontinuities)
— thermal models
— implementation based on mixed-hybrid formulation of FEM
— the fractures are represented by the lower dimensions elements
— software Flow 123d (developed at TUL)
example: model of tunnel inflows in the Prototype Repository experiment (saturated rock with fractures)

= Richards’ equation (COMSOL Multiphysics)
— standard (H) and non-isothermal (TH) formulations of Richards’ equation
— advective flow of liquid water + diffusive flux of water vapour
— implemented in user-defined PDE interface of COMSOL Multiphysics
example: models of bentnite saturation of Prototype Repository experiment (H and TH problems)

Studentska 1402/2 | 461 17 Liberec 2 | tel.: +420 485 353 843 | ilona.hancilova@tul.cz | cxi.tul.cz 7



TECHNICKA UNIVERZITA V LIBERCI
Ustav pro nanomaterialy, pokrocilé
technologie a inovace

= TH conception (ISERIT)
— coupled transport of the heat and water vapour

— water is distributed into two phases: the vapour in the pores and liquid water
in the solid grains

— non-equilibrium interaction between both phases

— software tool: ISERIT developed at TUL

examples: benchmark TH models according to laboratory experiments within project Task Force on Engineered

Barrier System

= Diffusion conception (ANSYS)
— hydraulical problems
— approximation of Richards’ equation by diffusion equation with nonlinear diffusivity
— degree of saturation is unknown variable (negative pressure levels only)
— computational tool: ANSYS
— possibility of simplified coupling (TH and HM problems)
examples: models of bentonite saturation according to laboratory and in situ experiments
(Prototype Repository, Bentonite Rock Interaction Experiment, Water Uptake Test, ...)
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DE LA RECHERCHE A L'INDUSTRIE

ceaden

Swelling properties of MX-80
bentonite materials for Andra’s
repository engineered barriers

Fabien Bernachy-Barbe

Laboratory for the Study of Concrete and Clays

Beacon Initial Workshop - Kaunas, Lithuania — 19/06/2017
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Ccaden |ISSUES (1/2)

DOPAS-FSS (full scale

seal) mock-up 30% Crushed pellets

70% diam. 32 mm
pellets

Filling process

o

Heterogeneities at different scales :

Global
density
gradient

Concrete
COx claystone

B Representative volume element for these granular materials ?

Centimeter scale - .

Displacement
sensor

Force
sensor

Swelling pressure

Boundary effects ?

0 200 400
Time (days)

Metric scale ?

Technological
voids

Chemical
heterogeneities
at interfaces

Local density
variations

CEA | 19/06/2017 | PAGE 10



dm scale test :

. Hydration of ¢ £ '?",f

240 mm,
h=105 mm
sample (124
pellets)

. Radial force
and THR
Sensors

Pressure
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e P1 (bar)
Z=20mm

@ P3 (bar)
Z=60mm

e P4 (bar)
Z=80mm

Time (days)

e Pression
axiale

20% « final »

local pressure

- variability, do
not seem to

_| resorb

100

B Effect of concrete porewater on swelling properties ?

6.0

5.0

40

3.0

20 ¢

Swelling pressure (MPa)

1.0

0.0

In the tested (specific) conditions :

= Lower swelling pressure,
unstable at short-term
= Hydraulic conductivity x10

—FTP site water d =1.506
—QOrdinary concrete water, d » 1.508
——Low pH concrete water, d = 1.509

= Though, effect decreasing with
sample size (boundary layer

_ . effect)
10 100
Time (days)

Concrete

Bentonite seal

COx claystone

CEA | 19/06/2017 | PAGE 11
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Lasgit (Large scale gas injection test)

Jon Harrington, Rob Cuss and Patrik Sellin

Test comprised a number of stages:
1 Evaluation and characterisation
2 Hydration

3.  Hydraulic testing

4., Gastesting
5

A
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Test site

© NERC All rights reserved
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Hydration and hydraulic testing
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RESEARCH ACTIVITIES
AT RWMC
ON THE BENTONITE
RE-SATURATION PROCESS

(1) Overview

Tomoko Ishii (ishii.tomoko@rwmc.or.jp), Minoru Emori,

This research is part of the Development of Advanced Technology for
Engineering Components of HLW Disposal initiative, and is conducted with @
grant from the Japanese Ministry of ECconomy, Trade and Industry (METI).




RWMC's
bentonite
research

to update the design and installation method

1 1

to specify initial condition at the installation of EBS
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Tests on mechanical behavior of buffer

material during re-saturation
RWMC
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Prototype Repository — Mass
redistribution in the buffer and
the tunnel backfill

Lars-Erik Johannesson, Patrik Sellin, David
Luterkort, Peter Eriksson
Swedish Nuclear Fuel and Waste
Management Co (SKB). Solna, Sweden




Mass redistribution in the buffer and
the tunnel backfill




Mass redistribution in the buffer and
the tunnel backfill

Section 9
Dry denisty (kg/m®)

X (m)

Buffer in deposition hole
Mx-80 Bentonite

Tunnel backfill
(bentonite/crushed rock 30/70)



This project receives funding from the Euratom L
research and training programme 2014-2018
under grant agreement No 745942 Tt

BLOCK-PELLET HOMOGENIZATION IN KBS-3V BUFFER
— LABORATORY SCALE TEST

Poster presentation
Beacon 15t workshop
19t — 20t of June 2017

Lasse Lavikainen (presenter), Posiva Oy
Jari Martikainen, Saanio & Riekkola Oy
Teemu Laurila, Saanio & Riekkola Oy
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BLOCK—-PELLET HOMOGENIZATION IN KBS-3V BUFFER — LABORATORY SCALE TEST

Introduction

19.6.2017
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BLOCK—-PELLET HOMOGENIZATION IN KBS-3V BUFFER — LABORATORY SCALE TEST

Results & Outlook

Recorded swelling pressures (SP) [kPa]

@=70 mm | =100 mm*

X :  SP(block, avg) ~1150 ~1500
; : SP(pellet, avg) ~400 ~850
) £ ASPavg)  ~750 ~650

*on-going test!

Distance From Bottom [mm)|

Julkinen 23
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T e

Lavikainen Lasse

19.6.2017






Buffer and Backfill Interaction

David Luterkort, Swedish Nuclear Fuel and
Waste Management Co (SKB).

Lennart Borgesson, Clay Technology AB




Buffer and Backfill Interaction

Models for predicting the upward swelling off
buffer and compression of the dry tunnel backfill
has been further developed and used as a tool for
updating buffer and backfill design

The modelled results agreed well with the
measured up to about 8 cm displacement when
the backfill blocks started to crack




General conclusions

A few cases were also simulated using a
3D model. The comparison with the 2D
model showed that the 2D model gives
more pessimistic results, i.e. larger upward
swelling.

General conclusions:

*  The tested models could simulate the
deformation of the backfill until
diffused failure of the blocks occurred

» The reference design results in
acceptable upward swelling

« The stiffness and thickness of the pellet
filling in the floor and roof are the
factors most sensitive to changes

*  Only low density buffer (starting values
close to the limit) causes problems for
the buffer.

u, U2
+1.515e-01
+1.334e-01
+1.154e-01
+9.7362-02
+7.933e-02
+6.130e-02
+4,326e-02
+2.523e-02
+7.203e-03
-1.083e-02
-2.886e-02
-4,689e-02
-6.492e-02




ROCK STRESS- AND TIME-DEPENDENCY IN OVERPACK
DISPLACEMENT AND BENTONITE PRESSURE BY
CENTRIFUGE PHYSICAL MODELLING TEST IN
PREDICTING FUTURE OF NEAR-FIELD

Central Research Institute of Electric Power Industry
(CRIEPI, Japan)

Soshi NISHIMOTO

The first Beacon international scientific workshop on Mechanical Properties of

Bentonite Barriers
Jun. 19, 2017

||||||| Rrseych hthute of
Edactric Powr Indastyy
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Improvement of reliability of future prediction of HLW

disposal repository

OUR POINT

» Based on a centrifuge scaling law, the
future behaviors are predicted by the
time-acceleration model tests.

» These results are reflected in the
improvement of the reliability in the
analysis.

[Scaling law] model size: 1/N
and acceleration (G) : N

-> time: 1/N2
(e.g. The behavior in 100 years for
the actual near field can be tested in
about 6 weeks by 30 (G) and 1/30
model.)

e —

N‘umer‘ic behavior

in near-
field

*The equivalent elapsed time for the al
migration of underground water that . .
satisfies Darcy’s law, the stress due to SImUIatIO
consolidation and swelling, and the
distribution of elastic strain can be
shortened, compared with the full-scale
elapsed time
O Long-term behavior can be
analyzed.
X Necessity of a verification of the
applicability of the model.
[in CREPI]
e.g. Sawada et al. (2006, 2010,

2012, 2017

O Equivalent data of a long-term
behavior can be obtained in lab.

X Limitation coming from small size.

[in CRIEPI]

e.g. Nakamura & Tanaka (2004,

2006, 2009), Nishimoto et al. (2012,

2014, 2016)

O Similar actual behavior can
be observed

X Test time is very short
(~20yr.)

[in CREPI]

e.g. Okada et al. (2009, 2012)




Example of results: Stress & time dependency of bentonite pressure

(a) Near-field model
(b) Target HLW disposal

repository.
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(and, rock strain and overpack displacement )

Example of results

(Bentonite pressure)

(Rock strain)

Equivaient tme (yr) Equivalent time (yr)
01 11 1111111 1 1 1111110 (oo W | 13!00 65 . 01 1 10 100
W S (Boggoy i .
{=iifwerci | Decrease by deformati \ n) ] = gaugeé
® 254 2o towarcw | of hole 4000 4 |— >auge
% 1[=Froma(cz) 1 1= Gauge3
20117 Kananionme 3 3000 § (= Gauged | , _
g B Coinrgprese ¥ = : Deformation by bentonite
g 154 ¥ ® 2000 3 pressure
8 0 1 (./‘) 3
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5 1 i
§ 057 04
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T T T T iriry T T 1T T 100y T T T T iiir] _1 T T T T71r T R | T T TTTTrTy
1 10 100 1000 d(C°mP'ess'| 10 100 1000
Test elapsed tme (h) on) Test elapsed time (h)

® Stress dependency

In the test of “stress-constraint condition” (bentonite surroundings is sedimentary rock mass, and
surrounding DEFORMS), the values of local maximum are different in response to the loaded the
confining pressures. On the other hand, the local maximum value is almost same the in the test
of “strain-constraint condition” (bentonite surroundings is stainless steel ,and surrounding DOES NOT
deform) as long as density of bentonite is the same.

® Time dependency

In the test of “stress-constraint condition”, the values of soil pressure were continuing to decline
after the local maximum were measured. They did not converge after 165 equivalent years
elapsed. On the other hand, the value of the "strain-constraint condition” converged after 20 to
30 equivalent years elapsed.




Handling of the mechanical
evolution of the bentonite buffer in
the SR-Site safety assessment

Patrik Sellin, Swedish Nuclear Fuel and
Waste Management Co (SKB). Solna,
Sweden




Bentonite Mechanical Evolution

 The excavation and
operation phases
— Piping damage Backfill
* The initial period of
temperate climate after
closure
— Buffer homogenisation - C
— Buffer upward expansion 1
— Movement of the canister in
the deposition hole.
 The remaining part of the
reference glacial cycle S

— Homogenisation after loss of
bentonite mass

Buffer
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Mock-Up Josef
In-situ experiement

Irena Hanusova, Lucie Hausmannova, Nikol
Novotna3, Jifi Stastka, Jifi Svoboda



v’ scale % (diameter 720mm, length 2230mm)
v’ 1st in-situ experiment to be performed at this
scale using Czech Ca-Mg bentonite
v’ 105 sensors
= temperature
= total pressure
= relative humidity
v sampling availability throughout the

experiment




Y VYV

Conclusions

swelling pressure developed almost immediately following the placement of
the supercontainer in the well

the saturation of the bentonite barrier is not homogeneous (observed from
values measured by total pressure sensors and the evaluation of the
bentonite core samples)

the highest total pressure value was obtained from below the heater

heating immediately influenced total pressure within the barrier




HETEROGENEITIES AND HYDRO-MECHANICAL
BEHAVIOR OF BENTONITE-BASED STRUCTURE:
LESSONS LEARNT FROM LARGE SCALE
EXPERIMENTS

Jean Talandier, Rémi de La Vaissiere, Jacques Wendling

. Workshop Beacon 19-20 june 2017




Lessons from several experiments at different scales

The FSS Experiment (Full Scale Seal) The PGZ2 Experiment (URL)

Low pH SCC ContainmentWall

Swelling Clay Core

Low pM Shotcrete Containment Wall
=~ Breakouts

F55 Test Box (Cigeo Drilt Mock-up)

Support Wall made of low pH SCC prefabricated bricks

Demonstrating the industrial capacity to Dedicated to gas transfer properties of seals
emplace large volumes of bentonite & low pH and water saturation of bentonite plugs
concrete

iy
Y I S
i 4 &
l“ll'li"‘ l\

Pellets (32mm)/crushed pellets mixture

Compacted cylinders bentonite/sand

" This document is the sole property of Andra. Workshop Beacon 19-20
© Andra [NUMANDRA] I It cannot be reproduced or communicated without its prior permission. : june 2017



Lessons from several experiments at different scales

Pre-compacted bentonite/sand
(40%/60%) +pellets/powder mixture

The NSC experiment (URL)

« Massif Instrumentation sections

Injection
chamber
concrete plug
Length 2 m

- \‘"

Testing hydraulic efficiency of a seal after full water saturation (artificial Hydration)

Main learning points concerning bentonite homogenization /
mechanical evolution and relevance for the project

« Initial heterogeneities in bentonite structure can’t be avoided
« Water hydration of bentonite depends of the environment conditions

> Total pressure and swelling pressure are not uniform in bentonite

during water saturation phase

« Hydro-mechanical equilibrium is long to obtain

> Performances expected are reached before a complete homogenization
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Swelling Pressure (MPa)
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Background

Engineered Barrier Systems composed of components with different initial dry density
(eg bentonite blocks, pellets-filled slots).

The homogenization process: dry density differences tend to decrease with time.

Two material models

Thermoelastoplastic (TEP)
laws implemented in

Code_Bright. Used to analyse

water unsaturated KBS-3
buffer and backfill.

Hysteresis based material
model (HBM). Development
motivated by homogenisation
tests with water saturated
bentonite specimens.
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Incorporation of swelling pressure and shear strength

« TEP: adoption of plastic parameters for specific void ratios, and a void ratio
dependence was introduced into the definition of the swelling module.

« HBM: fundamental properties are at the core of the material model and no
parameter value adoption is needed for specific void ratios.

Examples and

) Backfill homogenization (TEP) Axial swellin% tests (HBM)
comparisons ; e
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PRACLAY Seal test

PRACLAY gallery:
1) Heater test

2) Seal test

Seal:
1) Steel structure

2) MX80 bentonite

backfill material (sand)

primary heater secondary heater

Boom clay

MX80 Bentonite

Seal /

Steel structure
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Numerical interpretation and prediction

d 2D axisymmetric coupled THM model by Finite element code “Code_Bright”
1 Hydro-mechanical responses of bentonite in the seal is evolving generally as predicted

d Reasonably good agreement highlights the capacity of the model
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