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Introduction

 Safety functions of the bentonite engineered barrier (some are
applicable to seals)
» Low hydraulic conductivity and low diffusivity (k < 1011 - 10-12 m/s)
= Minimization of advective flow
= Low diffusion
» Significant swelling pressure (0.5 - 2MPa)
= Adequate sealing capacity
= Minimization of microbial activity
» Resistance to mineral transformation
» High radionuclide sorption

J Hydraulic conductivity and swelling pressure are basically
controlled by dry density (porosity)

» Dry density values of 1.25 — 1.5 g/cm? are often specified (requiring a
higher emplacement dry density)



Introduction

4 For a given bentonite...
QO Swelling pressure and hydraulic conductivity depend mainly on dry
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Introduction

4 For a given bentonite...
QO Swelling pressure and hydraulic conductivity depend mainly on dry
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Introduction

O If heterogeneity is present , average dry density is not sufficient to
characterize the state of the barrier or a seal

O The maximum hydraulic conductivity will be controlled by the
connected zone of lowest dry density

» Potential for preferential paths

O Gas migration is often a local phenomena controlled by the weakest,
more permeable zones

» Heterogeneity of the saturated barrier will dominate the pattern of gas
migration

QO Swelling pressure shows a stronger trendency towards
homogenization

» But it may also be non-uniform
 Bentonite heterogeneity has been observed at the final state of a range of
laboratory and field tests although the evidence is not uniform

» A degree of heterogeneity has been observed even with the bentonite
at or close to saturation



Introduction

J Sources of heterogeneity (1/4)
O Design / Emplacement
» Combination of pellets and blocks in the same section
» Geometrical irregularity of the opening
» Presence of technological gaps and voids

» Segregation of granular material
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[ Sources of heterogeneity (2/4)
O Material

> Pellets ,

» Mixture pellets/powder
» Sand/bentonite mixture

MX-80 Bentonite pellets

Sand-bentonite mixture
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[ Sources of heterogeneity (2/4)
O Material
» Pellets
» Mixture pellets/powder
» Sand/bentonite mixture
» Compacted bentonite
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Introduction

J Sources of heterogeneity (3/4)
O Behaviour during the transient stage

U Near heater U Near rock U Near heater U Near rock
QO Clay dries O Clay hydrates QO Clay dries O Clay hydrates
O Clay contraction O Clay swelling O Clay contraction O Clay swelling

Hostrock Host rock

Water in Water in

U Across the barrier

O Swelling stress
development

U Across the barrier

O Swelling stress
development

Isothermal Non-isothermal
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J Sources of heterogeneity (4/4)
O Events in the saturated phase (after transient phase)
= Erosion, piping, dissolution, colloid formation

0005
weo-/l

; .

Borgesson L. et al. (2014) Consequences
of water inflow and early water uptake in
deposition holes. EVA-PROJECT



Introduction

 The degree and distribution of heterogeneities will vary during the
transient phase involving only hydration (backfills, seals and plugs) or
hydration and heating (buffers)

Q Itis necessary to predict the evolution and final state of the heterogeneities
O The degree of homogenization achieved may be affected by thermal effects
QO Potentially, heterogeneity may evolve beyond the end of the transient phase
O The final state of the barrier will depend on features of bentonite

mechanical behaviour such as:

Q Interaction with hydraulic processes

Q Interaction with thermal processes

Q Irreversibility and stress path-dependency
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A Soil Mechanics perspective

Expansive clays
O Because the physico-chemical phenomena occurring at particle level are
basically reversible, one would expect expansive clay behaviour to be
reversible and (possibly) stress path independent.

QO In fact, it is not! It has been long known that highly expansive clays
exhibit behaviour features such as irreversibility and street path
dependency (Gens & Alonso, 1992 Canadian Geotechnical Journal)
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A Soll Mechanics perspective

Expansive clays

O Because the physico-chemical phenomena occurring at particle level are
basically reversible, one would expect expansive clay behaviour to be

reversible and (possibly) stress path independent.

QO In fact, it is not! It has been long known that highly expansive clays
exhibit behaviour features such as irreversibility and street path
dependency (Gens & Alonso, 1992 Canadian Geotechnical Journal)
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A Soll Mechanics perspective

Expansive clays
O Because the physico-chemical phenomena occurring at particle level are
basically reversible, one would expect expansive clay behaviour to be
reversible and (possibly) stress path independent.

QO In fact, it is not! It has been long known that highly expansive clays
exhibit behaviour features such as irreversibility and street path
dependency (Gens & Alonso, 1992 Canadian Geotechnical Journal) -~
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A Soll Mechanics perspective

J CIEMAT suction-controlled oedometer tests on FEBEX bentonite
» Drydensity: 1.70 g/cm?3, w/c: 13.7%
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A Soil Mechanics perspective

Expansive clays: basis of behaviour

O Physico-chemical effects close to the clay mineral are basically
reversible

Q Strain irreversibility and stress path dependency are attributed to
the effects of microstructural (particle level) deformation on the

macrostructure (Gens & Alonso, 1992)
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A Soil Mechanics perspective

O Direct observation of an aggregate in the ESEM
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A Soll Mechanics perspective

QO Microstructural ESEM observations — Macrostructural swelling

measurements
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On the sources of irreversibility

Microstructural behaviour
Microstructural deformation is connected with the number of layers of
Interlayer water

The number of water layers define the basal spacing

In high density bentonite, a very large proportion of water is interlayer
water (Pusch et al. 1990)
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A Soll Mechanics perspective

Microstructural behaviour

(Villar et al. 2012)

O Basal spacing correlated with water content

O The hydration state of the interlayer is a function of the layer charge,
water activity, temperature, external pressure and salinity

O A degree of dependence on dry density and hydration time
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A Soll Mechanics perspective

Expansive clays
O Macrostructural and microstructural state variables may
change significantly due to the application of stress and
suction changes
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Laboratory experiments: isothermal

L RESEAL project tests

A mixture of bentonite powder and highly compacted pellets
L Adequate average density even if poorly (or non) compacted

=R
FoCa clay (calcium bentonite)

=
)

Dry density: 1.89 g/cm?3, w/c: 4%-5%

J How does it behave on hydration?



Laboratory experiments: isothermal

 How does it behave on hydration?
» A mixture of 50% powder and 50% pellets by dry weight (FoCa clay)

» Swelling pressure tests performed at CEA laboratory (dry density 1.60
g/cm3). Oedometric conditions, hydration from one end

» Complex swelling pressure development, scale-dependent
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Laboratory experiments: isothermal

 Microfocus X-ray computer tomography (uUCT)

QO Material: 50 % bentonite powder, 50 % high-density bentonite pellets
Q Density obtained from attenuation coefficient

O Resolution: about 50um
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Laboratory experiments: isothermal

Time evolution
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Laboratory experiments: isothermal

 Homogenization tests by Clay Technology (Dueck et al, 2011, 2014, 2016)
[ Saturated samples of bentonite
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Laboratory experiments: isothermal

 Homogenization tests by Clay Technology (Dueck et al, 2011, 2014, 2016)

[ Saturated samples of bentonite
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Laboratory experiments: isothermal

 Homogenization tests by Clay Technology (Dueck et al, 2011, 2014, 2016)
[ Saturated samples of bentonite
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Laboratory experiments: non-isothermal

L UPC Thermal test (Pintado et al. 2002)

©C 000 00

[ Compacted samples of bentonite
o, T(x,t)

Q=2,17W

Specimen: 38mm diameter, 76mm high

FEBEX bentonite, dry density: 1.63g/cm3, w/c = 15.33%, S, = 0.63
Initial temperature: 22°C

Test duration 7 days

Measurements during the test: temperatures

Measurements after the test: water content and sample diameter



Laboratory experiments: non-isothermal

Water content (%)

L UPC Thermal test (Pintado et al. 2002)
[ Compacted samples of bentonite
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Laboratory experiments: non-isothermal

 CIEMAT thermo-hydraulic tests (villar et al. 2008, 2012)
 Compacted samples of FEBEX bentonite.
O Dry density: 1.66 g/cm?, w/c: 13.6%

 Length; 60 cm, temperature 100°C
[ Tests dismantled at 6 months (2), 12 months (2), 24 months (2) and 7.6 years (1)
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Laboratory experiments: non-isothermal

 CIEMAT thermo-hydraulic tests (villar et al. 2008, 2012)
 Compacted samples of FEBEX bentonite.
 Dry density: 1.66 g/cm3, w/c: 13.6%
d Length; 60 cm, temperature 100°C
[ Tests dismantled at 6 months (2), 12 months (2), 24 months (2) and 7.6 years (1)
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Laboratory experiments: non-isothermal

 CIEMAT thermo-hydraulic tests (villar et al. 2008, 2012)
 Compacted samples of FEBEX bentonite.
 Dry density: 1.66 g/cm3, w/c: 13.6%
d Length; 60 cm, temperature 100°C
[ Tests dismantled at 6 months (2), 12 months (2), 24 months (2) and 7.6 years (1)
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Laboratory experiments: non-isothermal

 CIEMAT thermo-hydraulic tests (villar et al. 2008, 2012)
 Compacted samples of FEBEX bentonite.
 Dry density: 1.66 g/cm3, w/c: 13.6%
d Length; 60 cm, temperature 100°C
[ Tests dismantled at 6 months (2), 12 months (2), 24 months (2) and 7.6 years (1)
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Large-scale field experiments: non-isothermal

[ EB experiment: main features

O Performed at the Mont Terri laboratory (Opalinus clay)

O Engineered barrier made up of a lower bed made of compacted bentonite blocks and an
upper backfill made with a bentonite pellets based granular material

QO Isothermal test, artificial hydration
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Large-scale field experiments: non-isothermal

[ EB experiment: main features

Q Instrumentation to measure canister displacements, relative humidity in the
buffer, pore pressures in the rock and total stress in the interfaces
canister/buffer and rock/buffer.

O Dismantled after 10.5 years of years of testing (water content and dry density
distributions available). During dismantling, it has been confirmed that the
barrier was saturated at the end of the experiment

A1-25 CMT1 Bl cmT2 E B

Sampling sections __ 11 1 1
RETAINING :
1
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]
£
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=
=
m

220 75 450 L
25 2952 60 | 60 | 12 |33 15 a9 |
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(Mayor & Velasco., 2014)
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dry
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(Mayor & Velasco., 2014)
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[ Prototype experiment
» Performed at Aspd HRL (level -450 m)

S|
2 ’
. r ~—KBS-3H

,' RNR TRUE Block Scale

TRUE Block Scale

Prototype repository

Backfill and plug test

Pillar stability
experiment

Demostration of
deposition technology

Long term test of buffer
material Il (LOT Project)

RNR Microbe
Pilot Resin Injection (TRUE)

Canister retrival test

Temperature buffer test
Assembly hall

LASGIT
Two-phase flow

Long term diffusion

experiment (LTDE) Matrix Fluid Chemistry

Redox experiment (REX)

Tracer retention understandig experiment (TRUE-1)

@ Zone of excavation disturbance experiment (ZEDEX) is completed
© Long term test of buffer material | (LOT Project) is completed

Section 1




Large-scale field experiments: non-isothermal

2001 inner part installed

2003 outer part installed
2004 outer plug installed
2004 heater problems began

f' Tunnel: 65 m long and 5 m in
diameter

» Deposition holes: 8.37 m deep and
1.75 m in diameter

* There are two sections, both ending
with a concrete plug.

» The deposition holes were installed
with canisters/heaters and buffer.

crushed rock and the remaining
tunnel with 30% bentonite and 70%
crushed rock.

\_

~N

* The first 11 m tunnel is backfilled with

J

2010 excavation of outer part began
2011 excavation carried out and finished

2014 reporting finished of excavation phase

Approx. 2021 inner section to be excavated
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[ Prototype experiment
O Dismantling the backfill

Section 9 Sectlon 9 Section 9
Dry denisty (kg/m?) content Degree of saturation
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O Prototype experiment

(Kristensson & Malmberg 2013)
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O Prototype experiment
O Dismantling the Buffer

water content

Block C2 Dh5

Water content

750 ~

500

>0.35
I 0.33
0.31
0.29
0.27
0.25
0.23
0.21
0.19
0.17

250

-250

-500

-750

“ j--—_‘;‘:‘?‘:___ L‘ib:;xﬁs?— |1|—— -T"\_H gm

I ! e

(Kristensson & Malmberg 2013)



Large-scale field experiments: non-isothermal

Dry density (kg/m3)

[ Prototype experiment
O Dismantling the Buffer

Swelling of the outer part of the blocks
Compression of the pellet filled slot

The initial inner gap has closed

Processes have been non-symmetric

4 A
1600 —‘l_j_‘#

| 25
¢ 70

A 115
® 160

Y (mm)

@ 205
¢ 250

A295
@ 340

Block C2

1100 +——=tnitiatcomndition

200 400 600

Radius (mm)

800

1000

dry density

DH5:C2

Block C2 dh5
Dry Density kg/m?

1740
1700
1660
1620
1580
1540
1500
1460
1420
<1380

(Kristensson & Malmberg 2013)
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O Prototype experiment

750

500

250

-250 +

-500 ~

-750 ~

O Dismantling the Buffer

Block R7 Dh5

Water content

water content

0.35
| 0.33
0.31
I 0.29

0.27
0.25

0.23
0.21
0.19

0.17

—7 |
i\"\_ - = u. TR | . ___J\_IIIH
(Kristensson & Malmberg 2013)
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[ Prototype experiment

O Dismantling the Buffer

Swelling of the outer part of the blocks

Compression of the pellet filled slot

" The initial inner gap has closed
" Processes have been non-symmetric
1800 ]
p.B B B0 B m @) B.E
oo | (Tagg [ Ty" Bgtl @ =g e,
VYV, e e e
1600 {C ngdd o - 6o 3 = ggﬁ
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1000
500 600 700 800 900 1000
Radius (mm)
dry density

DH5:R6
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‘ 1420
1380

(Kristensson & Malmberg 2013)



Large-scale field experiments

. non-isothermal
[ Canister Retrieval Test (CRT)

O Performed at Aspd Rock Laboragtory
1 Installation

» Located in the 420m level at Aspo Retaining concrete plug
» 8.55 m deep, 1.75 m diameter

1060

Steel cone —__
» 16 filter mats for artificial hydration 9 Rock anchors

500

_"_‘-.. Instrumented block:
1\'1\ TI1P1U1W

- ; trumented block:
3y V2P 1U4W
WY

14 bentonite blocks‘\?:::f
> MX-80 bentonite blocks (d.d. = 1.71-1.79 g/cm?)  Goimisieiio ™
» Average initial w/c: 17%

Copper canister-._/, \".:\_\l
> Block diameter: 1.65 m (5cm thick pellet filled slot) % T —E“%“?:"%”é‘&“il“‘i{‘
> Canister diameter: 1.05m, weight 21.4 t |
» Thermal test

WY
Wl
10 Temperamre holes, |
3levelsx3 +borom |

N
|
|
|
i
Diractions: 10°, 80%, 170°

II
| {
RNR TRUE Block Scale

I < I"‘::'::: —
TRUE Block Scale
;

|
Prototype repository

ps |k Instrumented block:
I3T.7P.6U.15W
Backfill and plug test

|
Pillar stability &
Demostration of . 3
deposition technology g

Canister retrival test .

|
|
ng term test of buffer \
material Il (LOT Project)
? RNR Microbe
'\ Pot Resin Injection (TRUE) [ =t

LAsaIT > \ =
Two-phase flow

ol . |
Concrete foundation——

:_ Instrumented block:
IT,9P, 4U, 1B W

Redox experiment (REX)

F050

Tracer retention understandig experiment (TRUE-1)
® Zone of ion di (ZEDEX) is
Long term test of buffer material | (LOT Project) is completed

(Thorsager et al., 2002)



Isothermal

Large-scale field experiments: non-

[ Canister Retrieval Test (CRT)

(Thorsager et al., 2002)

Installation

Q




Large-scale field experiments: non-isothermal

[ Canister Retrieval Test (CRT)
O Installation

Three stages:

1. Boring of deposition hole and installation of
instrumented bentonite blocks and canister with
heaters. 2000

2. Saturation of the bentonite and evolution of the
thermal regime with measurement of thermal,
hydraulic and mechanical processes. 2000-
2005

3. Sampling and test of freeing the canister from
the bentonite and retrieving it. 2006

—&— Heater Power CRT
—=— Heater Power TBT
—<— Filter Pressure CRT

B

£

/.Y ] |

Heat Power [KW]
Water Pressure [MPa]

0 R b ‘ ‘ ‘
0 500 1000 1500 2000

Time [days] (Thorsager et al., 2002)
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[ Canister Retrieval Test (CRT)
O Dsimantling

(Johannesson, 2007)
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: hon-isothermal

[ Canister Retrieval Test (CRT)

4000

3500

Distance from top of R5 (mm)
n
g

500

O Dismantling

Final state

CRT 45-225° CRT 135-315°

Degree of saturation Degree of saturation

Distance from top of RS (mm)

750 500 250 O 250 500 750 750 -500 250 O 250 500 750
Radius (mm) Radius (mm)

Degree of saturation

Distance from top of RS (mm)

CRT 45-225°
Dry density

Distance from top of R5 (mm)

750 500 -250 0 250 500 750
Radius (mm)

4000

3500

1500

1000

Dry density

(Johannesson, 2007)

CRT 135-315°
Dry density

750 -500 -250 O 250 500 750
Radius (mm)

1675
1650
1625
1600
1575
1550
1525
1500
1475
1450
1425
1400
1375
1350
1325
<1300
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[ Canister Retrieval Test (CRT)

O Dsimantling

Final state

CRT 225-315°

Degree of saturation

Distance from top of RS (mm)

1800 " Aadios jm)
Eetaning concrete plug
1 700 Steel cone
L 8 DR ueE e eg®m 9 Rock anchors i
— 1 600 . a n%@. 4beqme blocks -'r.f'
™ . ) Ze Irin ?-m;h;a;cdﬁl and 10\‘\?:LN
£ 1500 el | .
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> 1400 Al L
/)] /
1300
G | 4o o | e
‘é' 1 200 o 1 350 Difecrion:: 107, 807, 1707
Q Block C4 A 225°
1100 —— Blo¢ ® 315°

1000

=== |nitial conditions

900
0 200

Dry density

400

Radius (mm)

600

800

Conerete foundation—_

(Johannesson, 2007)
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[ Canister Retrieval Test (CRT)

O Dismantling

Final state

Distance from top of RS (mm)

1800

1700

1600 mm.—gﬁ_ul_._'-_._ﬂ
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— 1400
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Large-scale field experiments: non-isothermal

] Febex Test: main features

QO Performed at the Grimsel Test Site (granite)
Engineered barrier made up of compacted bentonite blocks
Temperature-controlled test (maximum temperature 100°C)
Natural hydration

Measurements of temperature, relative humidity and total
stress in the barrier. Measurements available throughout the
test

Partial dismantling after 5 years of heating
Total dismantling after 18 yeas of heating
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[ Febex Test: dismantling
O Partial dismantling after 5 years of heating

' : | | |
48 49 50 /=13 I|55 56 57 ‘6Q 61 62 |_63 64, 65 66 67 68 .69|_70

el &
HEAIER #2 et -
CONCRETE LINER CABLE
PLUG CHANNEL
K A B1 C DI LEt MM M N GH I M2 F2 E2 D2 B2

W - : P %
x s e 2 e

(Barcena et al., 2003, Villar et al. 2005)
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[ Febex Test: dismantling Lloret (2003) Villar et al. (2005)
O Partial dismantling after 5 years of heating

Degree of saturation

L

=

dry density

water content



Large-scale field experiments: non-isothermal

1 Febex Test: dismantling

Water Content (%)
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 Febex Test: dismantling
O Total dismantling after 18 yeas of heating
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1 Febex Test: dismantling
59

Villar et al. (2015)
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1 Febex Test: dismantling

Water content (%)
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Summar_y and concluding remarks

 The final state of an engineered barrier, including its degree of
heterogeneity, depends on the mechanical behaviour of the bentonite and
its interaction with hydraulic and thermal effects

d The mechanical behaviour of highly expansive clays is complex and often
exhibits features such as stress path dependency and irreversibility

QO The occurrence and magnitude of Irreversibility and stress path
dependency should be carefully characterized by means of well-

designed and well-controlled tests on saturated and unsaturated
bentonite

Q Irreversibility and stress path dependency should be reproduced by
suitable constitutive models

[ There exists a large amount of experimental evidence (from long-term
laboratory and field tests) available to inspire and validate model
development



Summar_y and concluding remarks

d

The objective of the modelling with respect to bentonite homogenisation
would be

O Achieve and demonstrate process understanding
QO Attain and demonstrate predictive capabilities

Focus would be on the mechanical constitutive model that should exhibit
irreversibility and stress path dependency and encompass:
QO Saturated and unsaturated material for a wide range of densities

O Isothermal and non-isothermal conditions
O Blocks and pellet-based materials

The mechanical constitutive model incorporated in coupled HM and THM
formulations would be applied to:

QO Well-controlled laboratory tests at different scales (process understanding)

O Past and ongoing large scale field tests: EB, Febex, SEALEX, CRT...

QO Case studies for the verification of the performance of current designs for
buffers, backfills, seals and plugs

Long term homogeneity/heterogeneity may depend on creep behaviour

O Laboratory tests (limited duration); fundamental micro or nanoscale studies
may be required
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A Soll Mechanics perspective

Microstructural behaviour (Villar et al. 2016)

O Results of two test of 12 years duration
» 140: Hydration  GT40: Heating/hydration
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